

Development of a Multi-Sensor Navigation Filter for High Accuracy Positioning in all Environments

Professor Terry Moore Institute of Engineering Surveying and Space Geodesy The University of Nottingham

SPACE Partners

- University of Nottingham
 - Professor Terry Moore
 - Dr Chris Hill
 - Dr Chris Hide
- University College London
 - Professor Paul Cross
 - Dr Lawrence Lau
- Imperial College London
 - Dr Washington Ochieng
 - Dr Shaojun Feng
- University of Leeds
 - Dr Gary Brodin
 - Dr Rigas Ioannides

- Civil Aviation Authority
- EADS Astrium
- Leica Geosystems
- Ordnance Survey
- Nottingham Scientific Ltd
- QinetiQ
- Thales

SPACE Aim and Objectives

Robust, Accurate Positioning in Difficult Environments 'Centimetres Everywhere'

- Higher sensitivity algorithms for signal acquisition and tracking in harsh environments
- Exploitation of new signals
- Improved sensor error modelling
- Robust integrity and quality monitoring algorithms
- Integration of different sensors and data sources

SPACE Priority Environment

Transition Zone

- Indoor and Urban are key areas
- We define scenarios around transitions
- A transition is where the quality of the GNSS signal changes significantly

Plug and Play Sensor Integration

- Positioning sensors
 - GNSS (GPS/Glonass/Galileo)
 - SBAS
 - High sensitivity GPS
 - A-GPS
 - Pseudolites / Locatalites
 - Dead reckoning
 - INS
 - compass/gyro/odometer combinations
 - UWB
 - Bluetooth
 - Imaging sensors
- Velocity sensors
- Attitude sensors
- Others...

Plug and Play Filter Design

- Needs to be
 - flexible
 - easy-to-use
 - extendable
- No single navigation algorithm is suitable
 - want to try different linear combinations of measurements
 - want to model different states e.g. gyro bias, scale factors, misalignments
 - want cascading filters, single filter, feedback
- Integrate at a minimum
 - GPS / Galileo
 - Pseudolites / Locatalites
 - UWB / Bluetooth
 - INS / Dead Reckoning Sensors
 - Imaging sensors

Plug and Play Filter Design

- Identified three levels of user with different requirements:
 - Level 1: Default functionality that will reconfigure when different sensors are used
 - Level 2: User decides which states and modelled, and how the measurements are used
 - Level 3: Extendable functionality where user can add different states and measurement types

Filter States

- States are what the filter estimates
 - User definition of which states to model
- Defined procedure for adding states in future
- Current states implemented:

Position (Lat, long, height)	INS Position
Velocity (Nav frame)	INS Velocity
Acceleration (Nav frame)	INS Attitude
Jerk (Nav frame)	Gyro bias
$\Delta \nabla A$ mbiguities (1 per $\Delta \nabla$ range, multiple frequencies) *	Gyro scale factor
$\Delta \nabla$ L1 Ionosphere (1 per $\Delta \nabla$ range) *	Accelerometer bias
Receiver clock (1 per receiver) *	Accelerometer scale factor

Process Noise

- User definitions of where the noise enters the system
- Defined procedure for further spectral densities in future
- Currently implemented:

Position (Nav frame)	Gyro noise
Velocity (Nav frame)	Gyro bias
Acceleration (Nav frame)	Gyro scale factor
Jerk (Nav frame)	Accelerometer noise
$\Delta \nabla A$ mbiguities (1 per $\Delta \nabla$ range, multiple frequencies) *	Accelerometer bias
$\Delta \nabla$ L1 Ionosphere (1 per $\Delta \nabla$ range) *	Accelerometer scale factor
Receiver clock (1 per receiver) *	

Measurements

• 5 generic types of measurement input:

Range
Range rate
Position
Velocity
Attitude

- Measurements not defined by system (e.g. GPS, Bluetooth), they are defined by their properties
- Reformats measurements to form linear combinations and performs single, double differencing
- Defined procedure for adding measurements in the future

Filter Functionality

- Prediction models
 - INS
 - Dead reckoning
 - Unknown dynamics
- Integration of any position, velocity, attitude, range or range rate sensor e.g.
 - GPS
 - GPS+Galileo
 - GPS+Galileo+INS+Bluetooth
 - GPS+UWB+DR+...
- Easily configurable for single or multiple/ cascading/ decentralised/ centralised filtering approaches
- Extendable

Example of Use

- GPS and INS integration
 - Any number of IMU states e.g. gyro and/or accelerometer biases, scale factors etc
 - Subset of navigation states e.g. don't model height
 - Measurement updates from any system e.g GPS,
 Bluetooth, UWB, zero velocity, attitude updates
 - Feedback possible
 - Tight or loose integration algorithms
 (+ deep when fully integrated with software GPS receiver)
 - Forward, backward or smoothed
 - Extendable, e.g. for lever arm estimation

Examples of Use (2)

- TCAR for GPS+Galileo ambiguity resolution
 - Linear combinations of observations (wavelength vs ionospheric effect vs noise)

Examples of Use (3)

- Non-integer ionosphere free combinations can be configured easily
 - Dual or even triple frequency combinations
 - e.g. for modernised GPS

System	LC	Coefficients		nts	2	$\nabla \Delta \sigma_i$	$\alpha_{\scriptscriptstyle I}$
		k_1	k_2	k_3	$\lambda_{_{LC}}$	(m)	& β_I
GPS	IF ₁₂	1	$-\frac{\lambda_1}{\lambda_2}$	0	$\frac{\lambda_1 \lambda_2^2}{\lambda_2^2 - \lambda_1^2} = 0.4844$	0.0246	0
	IF ₁₃	1	0	$-\frac{\lambda_1}{\lambda_3}$	$\frac{\lambda_1 \lambda_3^2}{\lambda_3^2 - \lambda_1^2} = 0.4302$	0.0215	0
	IF ₂₃	0	1	$-\frac{\lambda_2}{\lambda_3}$	$\frac{\lambda_2 \lambda_3^2}{\lambda_3^2 - \lambda_2^2} = 2.9929$	0.1658	0

Source: Zhang, W., 2005, Triple frequency cascading ambiguity resolution for modernized GPS and Galileo, MSc Thesis

SPACE Reference Environment

SPACE Reference Environment Location

- University of Nottingham
 Sutton Bonnington Campus
- Brick storage barn next to field

SPACE Reference Environment Initial Survey

Total station survey

Laser Scanner

SPACE Kinematic Field Trial

- Navigation Grade INS
- Fixed reference points (5)
- Miniature rail track
 - Repeatable trajectory
- GPS, INS on riding car
- Large aluminium reflector
- Update points between fixed reference points

Aberporth trials

- 'Ideal' test data set
- Aberporth airport, Wales
 - Clear GPS environment
 - Runway
- Applanix POS-RS
 - Honeywell CIMU
- Different speeds between 20 and 70mph
- Different Dynamics
- 20 minute static at each end of trajectory
- POSPac software solution used as reference

Aberporth Trajectory

INS Alignment

- 2 step approach
 - Coarse alignment using direct equations on averaged data
 - Fine alignment using Kalman filter (ZUPT)
 - Fine alignment required principally for heading initialisation
- ZUPT can be used with IMU of sufficient accuracy to initialise attitude
- Test alignment against Applanix POSPac solution
 - Control over types of measurement update
 - Uses modified state vector heading alignment approach
- Accuracy of ZUPT greatly affects standalone INS performance (for validation)
- Initial attitude uncertainty 5°

Standalone performance

- Position and zero velocity updates at beginning and end of dataset
- SPACE filter drift ~300m
- POSPac drift ~450m
- Performance highly dependent on alignment

GPS and **INS** integration

SPACE Prototype Test Bed

- A legacy for this phase of the project
- Testing Users' technology, algorithms and data in combination with other Test Bed technology, algorithms and data
- Testing Users' technology on its own
 - Test Bed is a mobile truth
- Demonstration of state-of-the-art and near-future positioning performance
- Physical embodiment of the SPACE research

SPACE "1st Generation" Test Bed

Conclusions

- Plug & Play Filter being developed
- Initial trials to establish reference environments
- Kinematic Reference Environment
 - Navigation grade INS
 - Potential for centimetre level reference positioning
- Prototype test-bed to be developed within SPACE

Professor Terry Moore
Director IESSG
The University of Nottingham
University Park
Nottingham
NG7 2RD
UK

• Telephone: +44 (0) 115 951 3886

• Fax: +44 (0) 115 951 3881

Email: terry.moore@nottingham.ac.uk

WWW: www.nottingham.ac.uk/iessg